Terminale

Correction Série 2 : Méthodes physiques d'analyses chimiques

OMRI Rafik

Exercice N°1:

- 1°) Réaction de HCl sur l'eau : HCl (g) + H_2O (l) $\rightarrow H_3O^+$ (aq) + Cl^- (aq)
- 2°) La quantité de matière de chlorure d'hydrogène dissoute vaut n = V/V_m = 0,500/24,0 =
- 2,08.10⁻² mol. D'après l'équation de dissolution, on a $n(H_3O^+) = n(Cl^-) = 2,08.10^{-2}$ mol.

D'où $[H_3O^+] = n(H_3O^+)/V = 2,08.10^{-2} / 0,250 = 8,3.10^{-2} \text{ mol/L}$. Concentration identique pour les ions chlorure.

- 3°) La conductivité de la solution vaut $\sigma = \lambda (H_3O^+) [H_3O^+] + \lambda (Cl^-) [Cl^-] =$
- $35 \times 8,3.10^{-2} + 7,6 \times 8,3.10^{-2} = 3,54 \text{ mS}.$

Exercice N°2:

1°) Dissolution de l'hydrogénocarbonate de sodium dans l'eau :

 $NaHCO_3$ (s) $\rightarrow Na^+$ (aq) + HCO_3^- (aq)

La quantité de matière initiale en ion hydrogénocarbonate est n₁ (HCO₃⁻) = m₃/M = 1,625/84 = 1,93.10⁻² mol.

2°) Pour l'acide citrique on a n_i ($C_6H_8O_7$) = m_2/M = 0,965/192 = 5,03.10⁻³ mol.

Pour l'acide acétylsalicylique on a n_1 ($C_9H_8O_4$) = m_1/M = 0,324/180 = 1,80.10⁻³ mol.

3°) a) On a $HCO_3^- + HA \rightarrow H_2O + CO_2^- + A^-$

b) Tableau d'évolution ou d'avancement de la réaction

	avancement	HCO ₃ -	HA	H ₂ O	CO ₂	A ⁻
Etat initial	x = 0	1,93.10 ⁻²	1,80.10 ⁻³	solvant	0	0
Etat intermédiair e	x	1,93.10 ⁻² - x	1,80.10 ⁻³ - x	solvant	X	X
Etat maximal	X _{max}	1,93.10 ⁻² - x _{max}	1,80.10 ⁻³ - x _{max}	solvant	X _{max}	X _{max}

Détermination du réactif limitant :

On a n_i (HCO₃-) > n_i (HA), le réactif limitant est l'acide acétylsalicylique HA.

On a alors $x_{max} = 1,80.10^{-3}$ mol.

La composition finale du système est :

 $n_f (HCO_3^-) = 1,93.10^{-2} - 1,80.10^{-3} = 1,75.10^{-2} \text{ mol}$

 $n_f(HA) = 0$

 $n_f(CO_2) = 1,80.10^{-3} \text{ mol}$

 $n_f(A^-) = 1,80.10^{-3} \text{ mol}$

4°) a) Réaction entre HCO₃- restant et H₃A':

 $3 \text{ HCO}_3^- + \text{H}_3 \text{A}' \rightarrow 3 \text{ H}_2 \text{O} + 3 \text{ CO}_2 + \text{A}^{3-}$

b)Tableau d'évolution ou d'avancement de la réaction :

	avancement	3 HCO ₃ -	H ₃ A'	3 H ₂ O	3 CO ₂	A ³⁻
Etat initial	x = 0	1,75.10 ⁻²	5,03.10 ⁻³	solvant	1,80.10 ⁻³	0
Etat intermédiair e	x	1,75.10 ⁻² - 3x	5,03.10 ⁻³ - x	solvant	1,80.10 ⁻³ + 3x	х
Etat maximal	X _{max}	1,75.10 ⁻² - 3x _{max}	5,03.10 ⁻³ - x _{max}	solvant	1,80.10 ⁻³ + 3x _{max}	X _{max}

Détermination du réactif limitant :

On a n_i (HCO₃-)/3 = 1,75.10⁻²/3 = 5,83.10⁻³ mol et n_i (H₃A') = 5,03.10⁻³ mol.

Comme n_i (HCO₃-)/ 3 > n_i (H₃A') le réactif limitant est l'acide citrique.

L'avancement maximal vaut $x_{max} = 5,03.10^{-3}$ mol.

Composition finale du système :

 n_f (HCO₃⁻) = 1,75.10⁻² – 3x5,03.10⁻³ = 2,41.10⁻³ mol.

 $n_f(H_3A') = 0.$

 $n_f(CO_2) = 1,80.10^{-3} + 3x5,03.10^{-3} = 1,69.10^{-2} \text{ mol.}$

 $n_f (A^{3-}) = 5,03.10^{-3} \text{ mol}$

5°) Avant réaction, la loi des gaz parfait permet d'écrire : p_i .V = n_i .R.T avec p_i la pression initiale et n_i la quantité de matière initiale contenue dans le ballon fermé.

Après réaction, on a p_f .V = n_f .R.T avec p_f la pression finale et n_f la quantité de matière finale de gaz.

Si on soustrait les deux relations, on a :

$$p_f.V - p_i.V = n_f.R.T - n_i.R.T$$

Soit:

$$(p_f - p_i).V = (n_f - n_i).R.T$$

Et:

$$\Delta p.V = \Delta n.R.T$$

Avec $\Delta p = p_f - p_i$ et $\Delta n = n_f - n_i$

b) Calcul de $\Delta n : \Delta n = \Delta p.V/RT$

A.N.: $\Delta n = 367.10^2 \text{ x } 1,1.10^{-3} / (8,314x(273+20)) = 1,65.10^{-2} \text{ mol.}$

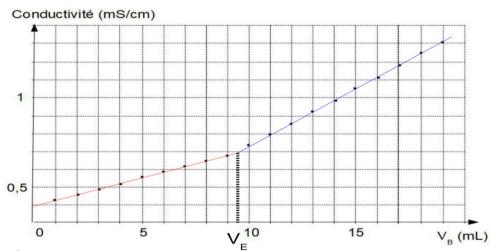
On obtient une valeur très proche de celle du 4°) b)

Exercice N°3:

- 1°) Les deux couples oxydant/réducteur en jeu sont : H₂O/H₂ (g) et Cl₂ (g)/Cl⁻ (aq).
- 2°) L'ion chlorure Cl- est oxydé en dichlore Cl₂ (perte d'électron).
- 3°) L'oxydation a lieu à l'électrode B car elle est reliée à la borne positive du générateur vers laquelle se dirigent les électrons.

4°) a) Tableau d'avancement

	Avancement	2 H ₂ O +	2 Cl ⁻ (aq) -	→ H ₂ (g) +	Cl ₂ (g) +	2 HO ⁻ (aq)	n(e ⁻) mol
Etat initial	0	excès	n _i (Cl⁻)	0	0	0	0
Etat intermédiaire	x	excès	n _i (Cl ⁻) - 2x	х	×	2x	2x
Etat final	Xf	excès	n _i (Cl ⁻) - 2x _f	Xf	Xf	2x _f	2x _f


- b) D'après le tableau d'avancement précédent, on a n(e⁻) = 2n₁(Cl₂).
- 5°) D'après l'équation bilan 2, on a $n(CIO^{-}) = n_2(CI_2)$.
- 6°) D'après l'équation bilan 2, on a n(e⁻) = n(ClO⁻).
- 7°) On a Q = $n(e^{-}).e.N_A = i.\Delta t$; soit $n(e^{-}) = i.\Delta t/(e.N_A)$.

A.N. : $n(e^{-}) = 20x3600/(1,6.10^{-19} \text{ x } 6,02.10^{23}) = 0,75 \text{ mol.}$ Cette quantité de matière est celle de CIO d'après le 6°)

Exercice N°4:

rafmaths.com

- 1°) a) Equation bilan : HA + HO \rightarrow A \rightarrow + H₂O
- b) Elle doit être rapide et totale.
- 2°) a) L'équivalence est le moment où les réactifs sont mélangés dans les proportions stoechiométriques et sont entièrement consommés.
- b) Le point équivalent est situé à l'intersection des deux segments qui ajustent les points expérimentaux. L'abscisse de ce point est $V_E = 9,5$ mL.

https://www.rafmaths.com

- c) A l'équivalence, on a n(HA présents) = n(HO $^{-1}$ versés), soit $c_A \cdot V_A = c_B \cdot V_E \cdot V_A = c_B \cdot V_B \cdot V_A = c_B \cdot V_A = c_B \cdot V_B \cdot V_A = c_B \cdot V_$
- On a alors : $c_A = c_B \cdot V_E / V_A \cdot A \cdot N \cdot : c_A = 8.10^{-2} \times 9,5/100 = 7,6.10^{-3} \text{ mol/L}.$ d) La masse d'acide HA contenue dans la solution A, provenant du comprimé, est donné
- d) La masse d'acide HA contenue dans la solution A, provenant du comprimé, est donné par $m_A = c_A$. V_S .M(HA) = 7,6.10⁻³ x 0,200 x 176 = 268 mg.
- 3°) Avant l'équivalence, les ions HO⁻ introduits sont entièrement consommés par l'acide HA pour former des ions A⁻ dont la concentration augmente au cours du dosage. Avec les ions Na⁺ apportés par la solution d'hydroxyde de sodium, ils font augmenter la conductivité de la solution.

Après l'équivalence, la formation des ions A⁻ cesse. Les ions HO⁻ ne sont plus consommés. La conductivité de la solution augmente plus rapidement qu'avant l'équivalence.

- 4°) L quantité de matière en ions A $^{-}$ est n(A $^{-}$) = m(ascorbate de sodium)/M = 0,285/198 = 1,44.10 $^{-4}$ mol.
- b) La réaction a lieu entre les ions A- et les ions H+ dans l'estomac :

$$A^- + H^+ \rightarrow HA$$

c) L'équation bilan précédente permet d'écrire que n(A⁻ apportés) = n(HA formés) = 1,44.10⁻⁴ mol.

Cette quantité de matière représente une masse $m(HA) = n(HA).M(HA) = 1,44.10^{-4} \times 176 = 253 \text{ mg}.$

La quantité de matière effectivement apportée par le comprimé vaut donc 268 + 253 = 521 mg. Valeur proche des 500 mg indiquée par le fabriquant.