OMRI Rafik

Acide et base au sens de Bronsted

- Au sens de Bronsted, un acide est une espèce chimique capable de céder au moins un protons. Une base est une espèce capable de capter au moins un proton H^+ .
- Couple acide/base, HA/A:

Acide = Base +
$$\mathbf{H}^+$$
 ou AH = A- + \mathbf{H}^+
Echange d'un proton

Remarque: la molécule d'eau est à la fois acide d'un couple et base d'un autre couple: on dit que c'est un ampholyte:

$$H_30^+ = H_2O + H^+ (H_30^+/H_2O)$$

 $H_2O = HO^- + H^+ (H_2O^-/H_3O^+)$

$$Ke = [H_3O^+] \times [HO^-] = 10^{-14}$$

Produit ionique de l'eau
 $Ke=10^{-14}$ et p $Ke=-\log Ke=14$

Notion de pH

Le pH d'une solution aqueuse est définit par la relation:

$$pH = \text{-log } [H_3O^+] \quad \text{et } [H_3O^+] = 10\text{-pH}$$

Acide fort- base forte

Un acide (ou une base) est dit **FORT** si sa dissociation dans l'eau est **TOTALE** ($x_f = x_{max}$).

- pour un $\textbf{acide fort}: pH = -\log c \hspace{0.5cm} ; \hspace{0.5cm} AH \hspace{0.1cm} + \hspace{0.1cm} H_2O \hspace{0.1cm} \rightarrow \hspace{0.1cm} A^{\scriptscriptstyle +} \hspace{0.1cm} + \hspace{0.1cm} H_3O^{\scriptscriptstyle +}; \hspace{0.1cm} [AH]_i = \hspace{0.1cm} c = [H_3O^{\scriptscriptstyle +}]_f$
- Pour une base forte: pH = pKe + log c; $A + H_2O \rightarrow AH + HO + ; [A]_i = c = [HO]_f$

pour un **acide fort** : pH = - log c Pour une **base forte:** pH = pKe + log c

Acide faible- base faible

Un acide (ou une base) est dit **FAIBLE** si sa dissociation dans l'eau est **PARTIELLE** ($x_f \ \langle \ x_{max} \rangle$.

- Réaction d'un acide faible avec de l'eau: AH +H20 = A· + H3O+

- La **constante d'acidité:**
$$Ka = \frac{[H_3O^+]_f \times [A^+]_f}{[AH]_f}$$
 avec $Ka = 10^{-pKa}$ et $pKa = -\log Ka$ On en déduit: $pH = pKa + \log \frac{[A^+]_f}{[AH]_f}$

Diagramme de prédominance

I Réaction d'autoprotolyse de l'eau :

1) D'où vient-elle?

Mesurons le pH d'une eau pure. On trouve pH = $7 \text{ à } 25 ^{\circ}\text{C}$.

Ceci signifie que la concentration des ions oxonium dans cette eau est de : $[H_3O^+_{(aq)}] = 10^{-pH} = 10^{-7}$ mol/L. D'où proviennent-ils ?

Puisqu'il n'y a que des molécules d'eau dans une eau pure, ce sont ces molécules d'eau qui ont données naissance aux ions oxonium.

Ainsi comme une solution est neutre électriquement, il y a présence d'anions en même quantité que les cations oxonium.

On explique cet équilibre par le fait qu'un ion oxonium est créé par une molécule d'eau qui capte un proton à une autre molécule d'eau, qui elle, à céder son proton.

- 2) <u>Equation de la réaction et produit ionique (1)</u>:
- a. L'eau, espèce amphotère, joue donc un double rôle d'acide et de base, selon l'équation :

b. A cette réaction, on associe une constante d'équilibre Ke appelée produit ionique de l'eau. On a :
$$\mathbf{K}_{e} = [\mathbf{H_{3}O^{+}_{(aq)}}] \times [\mathbf{OH^{-}_{(aq)}}]$$

Comme il y a autant d'ions oxonium que d'ions hydroxyde produits par l'autoprotolyse :

$$[H_3O^+_{(aq)}] = [OH^-_{(aq)}] = 1.0*10^{-7} \text{ mol/L}$$
 et $\mathbf{K}_e = \mathbf{10}^{-14}$

c. Généralement en chimie, à une grandeur \underline{X} on associe une grandeur $pX = -\log X$.

Ici on a alors:

$$pK_e = -\log K_e = 14$$

- 3) Echelle de pH:
- a. Définition (2):

Une solution est dite acide si elle contient plus d'ion oxonium que l'eau pure :

Solution acide
$$\Leftrightarrow$$
 [H₃O⁺_(aq)] > 1.0*10⁻⁷ mol/L \Leftrightarrow pH < 7.0

Une solution est dite basique si elle contient moins d'ions oxonium que l'eau pure :

Solution basique
$$\Leftrightarrow$$
 [H₃O⁺_(aq)] < 1.0*10⁻⁷ mol/L \Leftrightarrow pH > 7.0

- ➤ Une solution neutre sera donc une solution dont le pH est de 7.0 \Leftrightarrow [H₃O⁺_(aq)] = 1.0*10⁻⁷ mol/L
- b. Exemples : valeur de pH de différentes solutions courantes (voir doc ci-contre)

Eau de mer	8,0
Sang	7,35
Salive	7,0
Lait	6,8
Eau Perrier	6,0
Urine	6,0
Bière	4.5
Jus de tomate	4.2
Jus d'orange	3,5
Vin	3.5
Jus de citron	2,2
Suc gastrique	2,0

Doc n°1 :Valeur du pH de quelques solutions

c. Application (3):

Soit une solution d'hydroxyde de sodium de concentration 5.0*10⁻² mol/L.

Quelle est nature acido-basique de cette solution et quelle est la valeur de son pH?

On sait que
$$K_e = [H_3O^+_{(aq)}] \times [OH^-_{(aq)}] = 10^{-14} \text{ d'où } [H_3O^+_{(aq)}] = \frac{10^{-14}}{[OH^-_{(aq)}]} = \frac{10^{-14}}{5.0*10^{-3}} = 2.0*10^{-12} \text{ mol/L}$$

Alors pH = - log $[H_3O^+_{(aq)}] = -\log 2.0*10^{-12} = 11.7$

II Constante d'acidité d'un couple acido-basique :

1) Définition (4):

Soit un acide $HA_{(aq)}$ et sa base conjuguée $A^{\text{-}}_{(aq)}$. La constante d'acidité de ce couple acide/base est la constante d'équilibre de la réaction de l'acide avec l'eau :

$$HA_{(aq)} + H_2O_{(l)} = A_{(aq)}^- + H_3O_{(aq)}^+$$

$$\mathbf{K}_{\mathbf{A}} = \frac{\left[A^{-}_{(aq)}\right] \times \left[H_{3}O^{+}_{(aq)}\right]}{\left[HA_{(aq)}\right]}$$

A cette constante d'acidité KA on associe son pKA:

$$pK_A = - \log K_A$$

2) Exemples:

a. Soit l'acide éthanoïque de formule CH3-COOH et sa base conjuguée l'ion éthanoate de formule

CH₃-COO. Ce couple a pour constante d'acidité:

$$K_{A} = \frac{\left[CH_{3} - COO^{-}_{(aq)}\right] \times \left[H_{3}O^{+}_{(aq)}\right]}{\left[CH_{3} - COOH_{(aq)}\right]}$$

$$K_A = 1.7*10^{-5} \text{ à } 25^{\circ}\text{C} \text{ et p} K_A = 4.76$$

b. L'eau participe est membre de deux couples acidobasiques:

➤ Soit elle est acide dans le couple H₂O₍₁₎/OH_(aq):

$$H_2O_{(1)} + H_2O_{(1)} = OH_{(aq)} + H_3O_{(aq)}$$

$$H_2O_{(l)} + H_2O_{(l)} = OH_{(aq)}^- + H_3O_{(aq)}^+$$
Alors $K_A = [H_3O_{(aq)}^+] \times [OH_{(aq)}^-] = 10^{-14}$ et p $K_A = 14$

Soit elle est base dans le couple $H_3O^+_{(aq)}/H_2O_{(l)}$:

$$H_{3}O^{+}_{(aq)} + H_{2}O_{(l)} = H_{2}O_{(l)} + H_{3}O^{+}_{(aq)}$$
Alors $K_{A} = \frac{[H_{3}O^{+}_{(aq)}]}{[H_{3}O^{+}_{(aq)}]} = 1$ et $pK_{A} = 0$

Couple acide/base	pK _A à 25 ℃		
H ₃ O+ (aq)/H ₂ O (l)	0,00		
HF (aq)/F ⁻ (aq)	3,20		
H-COOH (aq)/H-COO- (aq)	3,75		
CH ₃ -COOH (aq)/CH ₃ -COO ⁻ (aq)	4,76		
CO ₂ ,H ₂ O (aq)/HCO ₃ (aq)	6,35		
NH ₄ (aq)/NH ₃ (aq)	9,20		
HCO ₃ (aq)/CO ₃ (aq)	10,3		
H ₂ O (I)/HO ⁻ (aq)	14,0		

Doc n°2 :Valeur du pKA de quelques couples acido-basiques

Les valeur de pK_A ne sont pas limitées par 0 et 14 mais peuvent prendre des valeurs négatives ou supérieures à 14.

C'est le cas notamment de certains acides comme l'acide nitrique HNO3, il réagit totalement avec l'eau et son pKA est négatif.

III Comparaison des acides entre eux et des bases entre elles à même concentration : Fiche

1) Comparaison des acides entre eux :

a. Critère de comparaison :

Pour comparer deux acides entre eux, on compare leur dissociation dans l'eau. Plus cette dissociation est importante, plus on dit que l'acide est « fort ». De quoi celle-ci dépend t-elle ?

b. Relation entre dissociation et taux d'avancement final pour :

On considère la dissociation d'un acide HA(aq) dans l'eau selon l'équation :

$$HA_{(aq)} + H_2O_{(l)} = A_{(aq)} + H_3O_{(aq)}^+$$

On obtient un volume V de solution.

Etablissons le tableau d'avancement de celle-ci :

Equation do	e la réaction	$HA_{(aq)}$	+	$H_2O_{(l)}$	=	A-(aq)	+	$H_3O^+_{(aq)}$
Etat	Avancement (mol)							
Initial	0	c×V		Excès		0		0
En cours	Х	c×V - x		Excès		x		x
final	Xéq	$c \times V - x_{\text{éq}}$		Excès		Xéq		Xéq

Le taux d'avancement final s'écrit donc :

$$\tau = \frac{x_{\acute{e}q}}{x_{max}} = \frac{x_{\acute{e}q}/V}{x_{max}/V} = \frac{\left[H_3 O^{+}_{(aq)}\right]}{c}$$

On voit alors que, pour une même concentration d'acide apporté, plus un acide est dissocié dans l'eau, plus la concentration en H₃O⁺(aq) sera grande et donc plus le pH final de la solution sera petit.

c. Relions ceci au constante d'acidité :

Expérimentalement, on mesure le pH de différentes solutions acides de même concentration 1.0*10⁻² mol/L. On calcul alors le taux d'avancement de la réaction et on met en relation ces résultats avec le pKA des couples :

Acides	pН	τ	pK_A
$H_3O^+_{(aq)} + Cl^{(aq)}$	2.0	1	0.00
HF _(aq)	2.6	2.5*10 ⁻¹	3.20
C ₆ H ₅ COOH _(aq)	3.1	7.9*10 ⁻²	4.19
CH ₃ -COOH _(aq)	3.4	4.0*10 ⁻²	4.75

d. Conclusion:

Pour deux solutions d'acides de même concentration en soluté apporté, la plus acide (plus petit pH) correspond à celle dont l'acide est le plus dissocié dans l'eau :

Si
$$K_A > K_A'$$
 ou $pK_A < pK_A'$ alors $pH < pH'$ et $[H_30^+_{(aq)}]_f > [H_30^+_{(aq)}]_f'$ et $\tau > \tau'$

2) Comparaison des bases entre elles :

Nous pouvons faire la même étude que précédemment. Le tableau d'avancement devient :

Equation de la réaction		$A_{(aq)}$ +	$H_2O_{(1)} =$	HA _(aq)	OH (aq)
Etat	Avancement (mol)	$n(A_{(aq)})$	$n(H_2O_{(l)})$	n(HA _(aq))	n(OH-(aq))
Initial	0	$c \times V$	Excès	0	0
En cours	X	$c \times V - x$	Excès	x	x
final	Xéq	$c \times V - x_{\text{éq}}$	Excès	Xéq	Xéq

Le taux d'avancement s'écrit :
$$\tau = \frac{x_{\acute{e}q}}{x_{\max}} = \frac{x_{\acute{e}q}/V}{x_{\max}/V} = \frac{\left[OH^{-}_{(aq)}\right]}{c} = \frac{Ke}{\left[H_{3}0^{+}_{(aq)}\right] \times c}$$

On comprend alors aisément que nous obtenons la conclusion suivante :

Pour deux solutions de bases de même concentration en soluté apporté, la plus basique (plus grand pH) correspond à celle dont la base est la plus dissociée dans l'eau :

Si
$$K_A < K_{A'}$$
 ou $pK_A > pK_{A'}$ alors $pH > pH'$

IV Constante d'équilibre associée à une réaction acido-basique (5) :

1) Cas général:

On considère la réaction acido-basique entre un acide $A_1H_{(aq)}$ et la base $A_2^-_{(aq)}$:

Pour connaître l'équation de cette réaction, on doit considérer les deux demi-équations associées à chaque couple: $A_1H_{(\alpha\alpha)} = A_1I_{(\alpha\alpha)} + H^+$

$$\frac{A_{1}H_{(aq)} = A_{1}^{-}_{(aq)} + H^{+}}{A_{2}^{-}_{(aq)} + H^{+} = A_{2}H_{(aq)}}$$
$$\frac{A_{1}H_{(aq)} + A_{2}^{-}_{(aq)} = A_{1}^{-}_{(aq)} + A_{2}H_{(aq)}}{A_{1}H_{(aq)} + A_{2}^{-}_{(aq)} = A_{1}^{-}_{(aq)} + A_{2}H_{(aq)}}$$

Ecrivons les constante d'équilibre de cette réaction :

$$\mathbf{K} = \frac{\left[A_{1}^{-}_{(aq)}\right] \times \left[A_{2}H_{(aq)}\right]}{\left[A_{1}H_{(aq)}\right] \times \left[A_{2}^{-}_{(aq)}\right]}$$

Multiplions en haut et en bas par la concentration en ions oxonium :

 $K = \begin{bmatrix} A_{1}^{-}(aq) \times [H_{3}O^{+}(aq)] \times [A_{2}H_{(aq)}] \\ A_{1}H_{(aq)} \times [A_{2}^{-}(aq)] \times [H_{3}O^{+}(aq)] \end{bmatrix}$ K_{A1}

D'où:

$$\mathbf{K} = \frac{K_{A1}}{K_{A2}}$$

2) Exemple:

Soit la réaction entre l'acide éthanoïque ($pK_{A1} = 4.76$) et l'ammoniac ($pK_{A2} = 9.20$). On peut savoir immédiatement si la transformation va être totale.

On calcul:
$$K \frac{K_{A1}}{K_{A2}} = \frac{10^{-pK_{A1}}}{10^{-pK_{A2}}} = \frac{10^{-9.20}}{10^{-9.20}} = 2.8*10^4$$
. $K > 10^4$: cette réaction est donc totale.

V Diagramme de prédominance et de distribution d'espèces acides et basiques en solution (6):

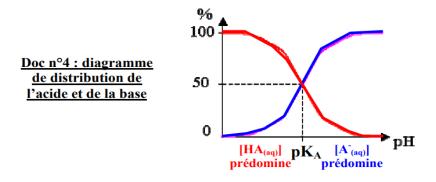
1) <u>Cas général</u>:

Soit un couple acido-basique
$$HA_{(aq)}/A_{(aq)}^-$$
 de $K_A = \frac{\left[A_{(aq)}^-\right] \times \left[H_3O_{(aq)}^+\right]}{\left[HA_{(aq)}\right]}$

Prenons le logarithme de cette expression :

$$\begin{split} \log K_A &= \log \frac{\left[A^{\text{-}}_{(aq)}\right]}{\left[HA_{(aq)}\right]} + \log \left[H_3O^{\text{+}}_{(aq)}\right] \\ \Leftrightarrow &- \log \left[H_3O^{\text{+}}_{(aq)}\right] = - \log K_A + \log \frac{\left[A^{\text{-}}_{(aq)}\right]}{\left[HA_{(aq)}\right]} \\ \Leftrightarrow &pH = pK_A + \log \frac{\left[A^{\text{-}}_{(aq)}\right]}{\left[HA_{(aq)}\right]} \end{split}$$

Ainsi:


Si
$$\mathbf{pH} = \mathbf{pK_A}$$
 alors $\log \frac{[\mathbf{A}^{-}_{(aq)}]}{[\mathbf{HA}_{(aq)}]} = 0$ donc $[\mathbf{A}^{-}_{(aq)}] = [\mathbf{HA}_{(aq)}]$

Si
$$\mathbf{pH} > \mathbf{pK_A}$$
 alors $\log \frac{[\mathbf{A}^{\mathsf{T}}_{(aq)}]}{[\mathbf{HA}_{(aq)}]} > 0$ donc $[\mathbf{A}^{\mathsf{T}}_{(aq)}] > [\mathbf{HA}_{(aq)}]$

Si
$$\mathbf{pH} < \mathbf{pK_A}$$
 alors $\log \frac{[\mathbf{A}^{-}_{(aq)}]}{[\mathbf{HA}_{(aq)}]} < 0$ donc $[\mathbf{HA}_{(aq)}] > [\mathbf{A}^{-}_{(aq)}]$

Voici le diagramme de prédominance alors obtenu :

On peut associer à ce couple acide base un digramme de distribution qui représente le pourcentage de chaque espèce en fonction du pH de la solution :

2) Application aux indicateurs colorés : zone de virage d'un indicateur coloré :

a. Définition:

On rappelle qu'un **indicateur coloré** est une **espèce qui existe sous deux formes**, l'une acide et l'autre basique, et que ces deux formes ont **deux couleurs différentes**.

$$HInd_{(aq)} + H_2O_{(1)} = Ind_{(aq)} + H_3O_{(aq)}^+$$

Au couple HInd_(aq)/ Ind_(aq) est associé un pK_A

c. Zone de virage:

- > Selon la valeur du pH par rapport au pK_A, c'est l'une ou l'autre des formes de l'indicateur coloré, donc une couleur qui va prédominer.
 - Lorsque pH = pK_A, on obtient une couleur qui est un mélange des deux couleurs de HInd et Ind: on appelle cette couleur la teinte sensible.
 Sinon au dessus et en dessous de ce point, on observe la teinte acide ou la teinte basique.
 - ➤ On appelle zone de virage la zone de pH autour du pK_A où on observe la teinte sensible. (Exemple expérimental : le BBT)

d. Intérêt d'un indicateur coloré:

Un indicateur serve à suivre l'évolution d'un titrage acido-basique. On connaît, grâce à sa couleur (teinte sensible), le moment où l'on passe au niveau de son pK_A .

On obtient alors environ le pH de l'équivalence : pH = p K_A .