Exercice N°1:

Soit le fonction f définie sur \mathbb{R} par : $f(x) = \frac{e^x}{e^x + 1}$

- 1) En mettant en évidence les limites de référence si besoin, déterminer les limites de f en $+\infty$ et $-\infty$.
- 2) a) Déterminer la dérivée de la fonction f.
 - b) En déduire le tableau de variation sur R.

Exercice N°2:

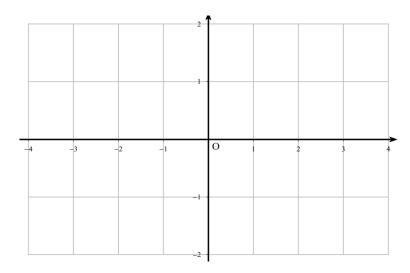
Soit la fonction f définie sur \mathbb{R} par : $f(x) = \frac{7}{2} - \frac{1}{2} (e^x + e^{-x})$. On note \mathcal{C}_f sa courbe représentative.

- 1) Calculer f(-x). Que peut-on conclure sur \mathcal{C}_f
- 2) Calculer $\lim_{x \to +\infty} f(x)$ puis en déduire $\lim_{x \to -\infty} f(x)$.
- 3) Calculer f'(x) puis dresser le tableau de variation de la fonction f.
- 4) Montrer que l'équation f(x) = 0 admet un unique solution α dans l'intervalle $[0; +\infty[$, puis justifier que l'équation f(x) = 0 admet exactement deux solutions sur \mathbb{R} et que ces solutions sont opposées.

Exercice N°3:

Soit la fonction f définie sur \mathbb{R} par : $f(x) = \frac{x}{e^x - x}$. On note \mathscr{C}_f sa courbe représentative.

- 1) Pourquoi la fonction f est-elle définie sur \mathbb{R} ?
- 2) a) Montrer que si $x \neq 0$, on a : $f(x) = \frac{1}{\frac{e^x}{x} 1}$
 - b) Déterminer les limites de f en $+\infty$ et $-\infty$. Interpréter géométriquement.
- 3) a) Déterminer la fonction dérivée f'.
 - b) Étudier le signe de la dérivée puis dresser le tableau de variation de la fonction f.
- 4) Déterminer une équation de la tangente (T) à la courbe \mathscr{C}_f au point d'abscisse 0.
- 5) Tracer soigneusement la courbe \mathscr{C}_f , en indiquant la tangente horizontale, et la tangente (T) sur l'annexe ci-jointe.



Exercice N°4:

Partie A

On considère la fonction g définie sur $[0; +\infty[$ par : $g(x) = e^x - x - 1$

- 1) Étudier les variations de la fonction g.
- 2) Déterminer le signe de g(x) suivant les valeurs de x.
- 3) En déduire que pour tout x de $[0; +\infty[, e^x x > 0]$.

Partie B

On considère la fonction f définie sur [0; 1] par : $f(x) = \frac{e^x - 1}{e^x - x}$

La courbe (C) représentative de la fonction f dans le plan muni d'un repère orthonormal est donnée en annexe. Cette annexe sera complétée et remise avec la copie à la fin de l'épreuve.

On admet que f est strictement croissante sur [0; 1].

- 1) Montrer que pour tout x de [0; 1], $f(x) \in [0; 1]$.
- 2) Soit (D) la droite d'équation y = x.
 - a) Montrer que pour tout x de [0; 1], $f(x) x = \frac{(1-x)g(x)}{e^x x}$.
 - b) Étudier la position relative de la droite (D) et de la courbe (C) sur [0; 1].

Partie C

On considère la suite (u_n) définie par : $u_0 = \frac{1}{2}$ et $u_{n+1} = f(u_n), n \in \mathbb{N}$.

- Construire sur l'axe des abscisses les quatre premiers termes de la suite en laissant apparents les traits de construction.
- 2) Montrer que pour tout entier naturel n, $\frac{1}{2} \le u_n \le u_{n+1} \le 1$.
- 3) En déduire que la suite (u_n) est convergente et déterminer sa limite.

Exercice N°5:

Soit f la fonction dérivable, définie sur l'intervalle]0; $+\infty[$ par : $f(x) = e^x + \frac{1}{x}$.

1) Étude d'une fonction auxiliaire

- a) Soit la fonction g dérivable, définie sur $[0; +\infty[$ par : $g(x) = x^2e^x 1$. Étudier le sens de variation de la fonction g et déterminer la limite de g en $+\infty$. On dressera le tableau de variation.
- b) Démontrer qu'il existe un unique réel a appartenant à $[0; +\infty[$ tel que g(a)=0.
- c) Déterminer un encadrement de a à 10^{-3}
- d) Déterminer le signe de g(x) sur $[0; +\infty[$.

2) Étude de la fonction f

- a) Déterminer les limites de la fonction f en 0 et en $+\infty$.
- b) On note f' la fonction dérivée de f sur l'intervalle]0; $+\infty[$. Démontrer que pour tout réel strictement positif x, $f'(x) = \frac{g(x)}{x^2}$.
- c) En déduire le sens de variation de la fonction f et dresser son tableau de variation sur l'intervalle]0; $+\infty[$.
- d) Démontrer que la fonction f admet pour minimum le nombre réel : $m = \frac{1}{a^2} + \frac{1}{a}$.
- e) Justifier que 3,43 < m < 3,45.