Exercice N°1:

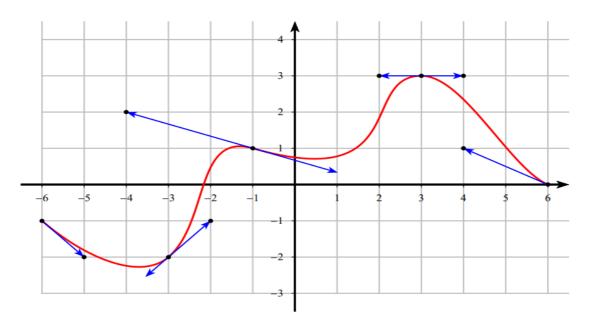
1) Donner la définition analytique du nombre dérivé d'une fonction f en a.

2) En utilisant le taux d'accroissement d'une fonction f en x: $\frac{f(x+h)-f(x)}{h}$, démontrer que la fonction dérivée de \sqrt{x} est la fonction $\frac{1}{2\sqrt{x}}$ pour $x \in]0$; $+\infty[$.

Exercice N°2:

1) À l'aide de la représentation graphique ci-dessous d'une fonction f, recopier et compléter le tableau ci-contre :

x	-6	-3	-1	3	6
f(x)					
f'(x)					



2) Sans utiliser la calculatrice, donner une approximation affine du nombre $\sqrt{9,12}$ On donnera la formule utilisée.

Exercice N°3:

Pour les fonctions suivantes :

- déterminer l'ensemble sur lequel la fonction est dérivable
- déterminer la fonction dérivée
- réduire au même dénominateur si nécessaire et factoriser lorsque cela est possible.

1)
$$f(x) = 4x^3 - 9x^2 + 3x + 2$$

5)
$$f(x) = \frac{x}{x^2 + 9}$$

2)
$$f(x) = -\frac{2}{x^3}$$

$$6) \ f(x) = x\sqrt{2x-3}$$

$$3) \ f(x) = \sqrt{4x+1}$$

7)
$$f(x) = x - \frac{4x+1}{7x+2}$$

$$4) \ f(x) = \frac{4}{1 + 3x}$$

8)
$$f(x) = (3x + 5)^4$$

Exercice N°4:

Dans chacun des cas, déterminer une équation de la tangente à la courbe $\mathscr C$ représentative de la fonction f au point x_0 .

1.
$$f(x) = x^3$$
 $x_0 = 1$

2.
$$f(x)=rac{1}{x}$$
 $\qquad x_0=-2$

3.
$$f(x)=\sqrt{x}+x^2$$
 $x_0=3$

4.
$$f(x) = \frac{x-1}{-2x+3}$$
 $x_0 = -1$